Deficiency of two-pore segment channel 2 contributes to systemic lupus erythematosus via regulation of apoptosis and cell cycle

Chin Med J (Engl). 2022 Jan 12;135(4):447-455. doi: 10.1097/CM9.0000000000001893.

Abstract

Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease, and the mechanism of SLE is yet to be fully elucidated. The aim of this study was to explore the role of two-pore segment channel 2 (TPCN2) in SLE pathogenesis.

Methods: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of TPCN2 in SLE. We performed a loss-of-function assay by lentiviral construct in Jurkat and THP-1 cell. Knockdown of TPCN2 were confirmed at the RNA level by qRT-PCR and protein level by Western blotting. Cell Count Kit-8 and flow cytometry were used to analyze the cell proliferation, apoptosis, and cell cycle of TPCN2-deficient cells. In addition, gene expression profile of TPCN2-deficient cells was analyzed by RNA sequencing (RNA-seq).

Results: TPCN2 knockdown with short hairpin RNA (shRNA)-mediated lentiviruses inhibited cell proliferation, and induced apoptosis and cell-cycle arrest of G2/M phase in both Jurkat and THP-1 cells. We analyzed the transcriptome of knockdown-TPCN2-Jurkat cells, and screened the differential genes, which were enriched for the G2/M checkpoint, complement, and interleukin-6-Janus kinase-signal transducer and activator of transcription pathways, as well as changes in levels of forkhead box O, phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin, and T cell receptor pathways; moreover, TPCN2 significantly influenced cellular processes and biological regulation.

Conclusion: TPCN2 might be a potential protective factor against SLE.

MeSH terms

  • Apoptosis / genetics
  • Cell Division
  • Humans
  • Jurkat Cells
  • Lupus Erythematosus, Systemic* / genetics
  • RNA, Small Interfering / genetics

Substances

  • RNA, Small Interfering