Thermosensitive Chitosan-Containing Hydrogels: Their Formation, Properties, Antibacterial Activity, and Veterinary Usage

Gels. 2022 Feb 4;8(2):93. doi: 10.3390/gels8020093.

Abstract

Mixtures of aqueous solutions of chitosan hydrochloride (CS·HCl, 1-4 wt.%) and Pluronic F-127 (Pl F-127, 25 wt.%) were studied using vibrational and rotational viscometry; the optimal aminopolysaccharide concentration (3 wt.%) and the CS·HCl:Pl F-127 ratio (30:70) to obtain a thermosensitive hydrogel were found. It was shown that at 4 °C, such mixed compositions were viscous liquids, while at 37 °C for 1-2 min, they undergo a thermally reversible transition to a shape-stable hydrogel with a developed level of structure formation, satisfactory viscosity and high mucoadhesive parameters (maximum pull-off force Fmax = 1.5 kN/m2; work of adhesion W = 66.6 × 10-3 J). Adding D-ascorbic acid to the hydrogel led to orientational ordering of the supramolecular structure of the mixed system and significantly improved mucoadhesion (Fmax = 4.1 kN/m2, W = 145.1 × 10-3 J). A microbiological study revealed the high antibacterial activity of the hydrogel against Gram-negative and Gram-positive bacterial strains. The treatment of mixed bacterial infection in cows demonstrated the possibility of the in situ formation of a viscoelastic gel and revealed its high therapeutic effect. It has been suggested that our thermosensitive mucoadhesive CS·HCl:Pl F-127 hydrogels could be considered as independent veterinary drugs and pharmaceuticals.

Keywords: Pluronic F-127; antibacterial activity; chitosan hydrochloride; thermosensitive hydrogels; veterinary drugs.

Grants and funding