Glioblastoma (GBM) is the most lethal among malignant gliomas. The tumor invasiveness and therapy-resistance are important clinical hallmarks. Growing evidence emphasizes the purinergic signaling contributing to tumor growth. Here we exposed a potential role of extracellular ATPase activity as a key regulator of temozolomide cytotoxicity and the migration process in GBM cells. The inhibition of ATP hydrolysis was able to improve the impact of temozolomide, causing arrest mainly in S and G2 phases of the cell cycle, leading M059J and U251 cells to apoptosis. In addition to eradicating GBM cells, ATP hydrolysis exhibited a potential to modulate the invasive phenotype and the expression of proteins involved in cell migration and epithelial-to-mesenchymal-like transition in a 3D culture model. Finally, we suggest the ATPase activity as a key target to decline temozolomide resistance and the migratory phenotype in GBM cells.
Keywords: ATP; CD39; Ectoenzyme; Glioblastoma; Migration; Temozolomide.
Copyright © 2022 Elsevier Inc. All rights reserved.