The spin-polarized scanning tunneling microscope (SP-STM) has served as a versatile tool for probing and manipulating the spintronic properties of atomic and molecular devices with high precision. The interplay between the local spin state and its surrounding magnetic environment significantly affects the transport behavior of the device. Particularly, in the contact regime, the strong hybridization between the SP-STM tip and the magnetic atom or molecule could give rise to unconventional Kondo resonance signatures in the differential conductance (dI/dV) spectra. This poses challenges for the simulation of a realistic tip control process. By combining the density functional theory and the hierarchical equations of motion methods, we achieve first-principles-based simulation of the control of a Ni-tip/Co/Cu(100) junction in both the tunneling and contact regimes. The calculated dI/dV spectra reproduce faithfully the experimental data. A cotunneling mechanism is proposed to elucidate the physical origin of the observed unconventional Kondo signatures.