Background: Standardized neuropsychological testing serves to quantify cognitive impairment in multiple sclerosis (MS) patients. However, the exact mechanism underlying the translation of cognitive dysfunction into difficulties in everyday tasks has remained unclear. To answer this question, we tested if MS patients with intact vs. impaired information processing speed measured by the Symbol Digit Modalities Test (SDMT) differ in their visual search behavior during ecologically valid tasks reflecting everyday activities.
Methods: Forty-three patients with relapsing-remitting MS enrolled in an eye-tracking experiment consisting of a visual search task with naturalistic images. Patients were grouped into "impaired" and "unimpaired" according to their SDMT performance. Reaction time, accuracy and eye-tracking parameters were measured.
Results: The groups did not differ regarding age, gender, and visual acuity. Patients with impaired SDMT (cut-off SDMT-z-score < -1.5) performance needed more time to find and fixate the target (q = 0.006). They spent less time fixating the target (q = 0.042). Impaired patients had slower reaction times and were less accurate (both q = 0.0495) even after controlling for patients' upper extremity function. Exploratory analysis revealed that unimpaired patients had higher accuracy than impaired patients particularly when the announced target was in unexpected location (p = 0.037). Correlational analysis suggested that SDMT performance is inversely linked to the time to first fixation of the target only if the announced target was in its expected location (r = -0.498, p = 0.003 vs. r = -0.212, p = 0.229).
Conclusion: Dysfunctional visual search behavior may be one of the mechanisms translating cognitive deficits into difficulties in everyday tasks in MS patients. Our results suggest that cognitively impaired patients search their visual environment less efficiently and this is particularly evident when top-down processes have to be employed.
Keywords: cognition; cognitive impairment (CI); everyday tasks; eye tracking (ET); multiple sclerosis; visual search (VS).
Copyright © 2022 Gehrig, Bergmann, Fadai, Soydaş, Buschenlange, Naumer, Kaiser, Frisch, Behrens, Foerch and Yalachkov.