The prevalence of bacterial pathogens among humans has increased rapidly and poses a great threat to health. Two-thirds of bacterial infections are associated with biofilms. Recently, nanomaterials have emerged as anti-biofilm agents due to their enormous potential for combating biofilm-associated infections and infectious disease management. Among these, relatively high biocompatibility and unique physicochemical properties of carbon-based nanomaterials (CBNs) have attracted wide attention. This review presented the current advances in anti-biofilm CBNs. Different kinds of CBNs and their physicochemical characteristics were introduced first. Then, the various potential mechanisms underlying the action of anti-biofilm CBNs during different stages were discussed, including anti-biofouling activity, inhibition of quorum sensing, photothermal/photocatalytic inactivation, oxidative stress, and electrostatic and hydrophobic interactions. In particular, the review focused on the pivotal role played by CBNs as anti-biofilm agents and delivery vehicles. Finally, it described the challenges and outlook for the development of more efficient and bio-safer anti-biofilm CBNs.
Keywords: Anti-biofilm; Anti-biofilm mechanism; Anti-fouling; Carbon-based nanomaterials; Inhibit quorum sensing.
Copyright © 2022 Elsevier B.V. All rights reserved.