Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the severity of the pathology. Our proposed approach aims moreto create a computer-aided system that is capable of helping morethe expert diagnose the brain gliomas. moreWe propose a supervised learning regime based on a convolutional neural network based framework and transfer learning techniques. Our research morefocuses on the performance of different pre-trained deep learning models with respect to different MRI sequences. We highlight the best combinations of such model-MRI sequence couple for our specific task of classifying healthy brain against brain with glioma. moreWe also propose to visually analyze the extracted deep features for studying the existing relation of the MRI sequences and models. This interpretability analysis gives some hints for medical expert to understand the diagnosis made by the models. Our study is based on the well-known BraTS datasets including multi-sequence images and expert diagnosis.
Keywords: Deep leaning model; Glioma classification; MRI; Model interpretability; Multi-sequences.
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.