Osteogenic Induction with Silicon Hydroxyapatite Using Modified Autologous Adipose Tissue-Derived Stromal Vascular Fraction: In Vitro and Qualitative Histomorphometric Analysis

Materials (Basel). 2022 Feb 28;15(5):1826. doi: 10.3390/ma15051826.

Abstract

Large bone defects requiring invasive surgical procedures have long been a problem for orthopedic surgeons. Despite the use of autologous bone grafting, satisfactory results are often not achieved due to associated limitations. Biomaterials are viable alternatives and have lately been used in association with Stromal Vascular Fraction (SVF), stem cells, and signaling factors for bone tissue engineering (BTE). The objective of the current study was to assess the biocompatibility of Silicon Hydroxyapatite (Si-HA) and to improve osteogenic potential by using autologous adipose-derived SVF with Si-HA in a rabbit bone defect model. Si-HA granules synthesized using a wet precipitation method were used. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). A hemolysis assay was used to assess the hemolytic effects of Si-HA, while cell viability was assessed through Alamar Blue assay using MC3T3 mouse osteoblasts. The osteogenic potential of Si-HA both alone and with enzymatically/non-enzymatically-derived SVF (modified) was performed by implantation in a rabbit tibia model followed by histomorphometric analysis and SEM of dissected bone after six weeks. The results showed that Si-HA granules were microporous and phase pure and that the addition of Silicon did not influence Si-HA phase composition. Si-HA granules were found to be non-hemolytic on the hemolysis assay and non-toxic to MC3T3 mouse osteoblasts on the Alamar Blue assay. Six weeks following implantation Si-HA showed high biocompatibility, with increased bone formation in all groups compared to control. Histologically more mature bone was formed in the Si-HA implanted along with non-enzymatically-derived modified SVF. Bone formation was observed on and around Si-HA, reflecting osseointegration. In conclusion, Si-HA is osteoconductive and promotes osteogenesis, and its use with SVF enhances osteogenesis.

Keywords: biocompatibility; cytotoxicity; hemolysis; histomorphometric analysis; silicon hydroxyapatite; stromal vascular fraction; tissue engineering.