High-Speed Erosion Behavior of Hydrophobic Micro/Nanostructured Titanium Surfaces

Nanomaterials (Basel). 2022 Mar 7;12(5):880. doi: 10.3390/nano12050880.

Abstract

Ice accretion on aircrafts or their engines can cause serious problems and even accidents. Traditional anti-icing and de-icing systems reduce engine efficiency, which can be improved by the use of hydrophobic/icephobic coatings or surfaces that reduce the amount of bleed air or electric power needed. These hydrophobic/icephobic coatings or surfaces are eroded by high-speed air flow, water droplets, ice crystals, sand, and volcanic ash, resulting in the degradation, material loss, or deterioration of the coating's waterproof and anti-icing properties. Thus, the durability of hydrophobic micro/nanostructured surfaces is a major concern in aircraft applications. However, the mechanism responsible for material loss in hydrophobic micro/nanostructured surfaces resulting from high-speed erosion remains unclear. In this paper, hydrophobic titanium alloy surfaces with cubic pit arrays are fabricated by photoetching and tested using a high-speed sand erosion rig. Under the same impact conditions, the erosion rates of the micro/nanostructured titanium surfaces were similar to those of smooth titanium alloy, implying that the hydrophobic surface fabricated on the bulk material had erosion-resistant capabilities. The material loss mechanisms of the micro/nanostructures under different impact angles were compared, providing useful information for the future optimization of micro/nanostructures with the goal of improved erosion resistance.

Keywords: erosion test; hydrophobicity; photoetching; titanium alloy.