(1) Background: Synovial fluid (SF) from knee joints with osteoarthritis (OA) has increased levels of phospholipids (PL). We have reported earlier that TGF-ß and IGF-1 stimulate fibroblast-like synoviocytes (FLS) to synthesize increased amounts of PLs. The current study examined whether IL-1ß induces the release of PLs in FLS and the underlying mechanism. (2) Methods: Cultured human OA FLS were treated with IL-1ß alone and with pathway inhibitors or with synthetic liver X receptor (LXR) agonists. Cholesterol hydroxylases, ABC transporters, apolipoproteins (APO), LXR, sterol regulatory binding proteins (SREBPs), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) were analyzed by RT-PCR, Western blot, and ELISA. The release of radiolabeled PLs from FLS was determined, and statistical analysis was performed using R (N = 5-9). (3) Results: Like synthetic LXR agonists, IL-1ß induced a 1.4-fold greater release of PLs from FLS. Simultaneously, IL-1ß upregulated the level of the PL transporter ABCA1 and of cholesterol hydroxylases CH25H and CYP7B1. IL-1ß and T0901317 stimulated the expression of SREBP1c, whereas only T0901317 enhanced SREBP2, HMGCR, APOE, LXRα, and ABCG1 additionally. (4) Conclusions: IL-1ß partially controls PL levels in OA-SF by affecting the release of PLs from FLS. Our data show that IL-1ß upregulates cholesterol hydroxylases and thus the formation of oxysterols, which, as natural agonists of LXR, increase the level of active ABCA1, in turn enhancing the release of PLs.
Keywords: ABCA1; CH25H; CYP7B1; FLS; LXR; cholesterol hydroxylase; interleukin; osteoarthritis; phospholipids; synovial fibroblasts.