Background: Our purpose is to develop a model combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics that can be used to estimate overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy.
Methods: We recruited 145 patients with pathologically confirmed nasopharyngeal carcinoma between February 2012 and April 2015. In total, 851 radiomic features were extracted from radiotherapy localisation computed tomography images for the gross tumour volume of the nasopharynx and the gross tumour volume of neck metastatic lymph nodes. The least absolute shrinkage and selection operator algorithm was applied to select radiomics features, build the model and calculate the Rad-score. The patients were divided into high- and low-risk groups based on their Rad-scores. A nomogram for estimating overall survival based on both radiomic and clinical features was generated using multivariate Cox regression hazard models. Prediction reliability was evaluated using Harrell's concordance index.
Results: In total, seven radiomic features and one clinical characteristic were extracted for survival analysis, and the combination of radiomic and clinical features was a better predictor of overall survival (concordance index = .849 [confidence interval: .782-.916]) than radiomic features (concordance index = .793 [confidence interval: .697-.890]) or clinical characteristics (concordance index = .661 [confidence interval: .673-.849]) alone.
Conclusion: Our results show that a nomogram combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics can predict overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy more effectively than radiomic features or clinical characteristics alone.
Keywords: nasopharyngeal carcinoma; nomogram; radiomic; radiotherapy localisation computed tomography; survival prediction.