Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation

Food Funct. 2022 Apr 4;13(7):3853-3864. doi: 10.1039/d1fo04136c.

Abstract

Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.

MeSH terms

  • Animals
  • Chemical and Drug Induced Liver Injury* / metabolism
  • Euphausiacea* / metabolism
  • Inflammation / metabolism
  • Lipopolysaccharides / metabolism
  • Lipopolysaccharides / toxicity
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Oxidative Stress

Substances

  • Lipopolysaccharides
  • NF-kappa B