Open-shell non-alternant polycyclic hydrocarbons (PHs) are attracting increasing attention due to their promising applications in organic spintronics and quantum computing. Herein we report the synthesis of three cyclohepta[def]fluorene-based diradicaloids (1-3), by fusion of benzo rings on its periphery for the thermodynamic stabilization, as evidenced by multiple characterization techniques. Remarkably, all of them display a very narrow optical energy gap (Eg opt =0.52-0.69 eV) and persistent stability under ambient conditions (t1/2 =11.7-33.3 h). More importantly, this new type of diradicaloids possess a low-lying triplet state with an extremely small singlet-triplet energy gap, as low as 0.002 kcal mol-1 , with a clear dependence on the molecular size. This family of compounds thus offers a new route to create non-alternant open-shell PHs with high-spin ground states, and opens up novel possibilities and insights into understanding the structure-property relationships.
Keywords: Azulenes; Fused-Ring Systems; Magnetic Properties; Open-Shell Diradicaloids; Polycyclic Hydrocarbons.
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.