The objective of this study was to optimize the production of powdered avocado using foam mat drying. In order to achieve this, the effect of Emustab® (4, 6, and 8% w/w), goat's milk (10, 15, and 20% w/w), and whipping time (15, 20, and 25 min) on the foam physical properties of avocado pulp were evaluated. In addition, the influence of ethanol pretreatment on the drying kinetics, thermodynamic properties, and physicochemical characteristics of the powders was also assessed. An experimental design 23 with three central points was used in this study and optimized foam conditions were dried at 50, 60, and 70°C, with a fixed air speed of 1.5 m/s. Empirical and diffusive models (boundary conditions of the third type) were adjusted to the experimental data to describe the drying kinetics and to determine the process activation energy and thermodynamic properties. The final products were characterized regarding their physical properties. Optimized foam mat drying conditions were achieved when avocado pulp was whipped for 15 min and 8% of Emustab® and 20% of powdered goat milk were used as foaming agents. The use of an ethanol pretreatment and higher drying temperature (70°C) resulted in higher drying rate (1.6 × 102 /min) and shorter processing time (270 min). The ethanol pretreatment reduced the activation energy and Biot number and led to more uniform moisture distribution. The physical properties, such as water content, water activity, bulk, and tapped densities decreased with an increase in drying temperature and pretreatment with ethanol, whereas water absorption capacity increased. PRACTICAL APPLICATION: In this work, new information about the drying kinetics and mass transfer of the foam mat avocado pulp using ethanol as pretreatment is obtained. The results will contribute to the optimization production avocado foaming and powder. Ethanol pretreatment can represent an alternative to minimize the negative impacts on drying process and can be surely suggested as an industrial application.
Keywords: foam properties; food preservation; food processing; mathematical modeling; organic solvent.
© 2022 Institute of Food Technologists®.