Spermatogenesis is an efficient, complex, and highly organized proliferation and differentiation process that relies on multiple factors including testosterone produced by the Leydig cells. Although the critical role played by testosterone in spermatogenesis is well recognized, the mechanism by which it works is still not completely understood, partially due to the inability to specifically and precisely monitor testosterone-dependent changes within developing germ cells. Here we present single-cell RNA sequencing data from10,983 adult rat testicular cells after the rats were treated with ethanedimethanesulfonate, which temporarily eliminates Leydig cells. The elimination and recovery of Leydig cells represented a complete testosterone depletion and restoration cycle. The dataset, which includes all developing germ cells from spermatogonia to spermatozoa, should prove useful for characterizing developing germ cells, their regulatory networks, and novel cell-specific markers. The dataset should be particularly useful for exploring the effects of the androgen environment on the regulation of spermatogenesis. As this is the first single-cell RNA-Seq dataset for rat testes, it can also serve as a reference for future studies.
© 2022. The Author(s).