C-di-GMP signaling can directly influence bacterial behavior by affecting the functionality of c-di-GMP-binding proteins. In addition, c-di-GMP can exert a global effect on gene transcription or translation, for example, via riboswitches or by binding to transcription factors. In this study, we investigated the effects of changes in intracellular c-di-GMP levels on gene expression and protein production in the opportunistic pathogen Pseudomonas aeruginosa. We induced c-di-GMP production via an ectopically introduced diguanylate cyclase and recorded the transcriptional, translational as well as proteomic profile of the cells. We demonstrate that rising levels of c-di-GMP under growth conditions otherwise characterized by low c-di-GMP levels caused a switch to a non-motile, auto-aggregative P. aeruginosa phenotype. This phenotypic switch became apparent before any c-di-GMP-dependent role on transcription, translation, or protein abundance was observed. Our results suggest that rising global c-di-GMP pools first affects the motility phenotype of P. aeruginosa by altering protein functionality and only then global gene transcription.
Keywords: Pseudomonas aeruginosa; RNA-seq; c-di-GMP; proteome; ribosome profiling.
© 2022 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.