Space-time (ST) wave packets are a class of pulsed optical beams whose spatiotemporal spectral structure results in propagation invariance, tunable group velocity, and anomalous refractive phenomena. Here, we investigate the refraction of ST wave packets normally incident onto a planar interface between two dispersive, homogeneous, isotropic media. We formulate a new, to the best of our knowledge, refractive invariant for ST wave packets in this configuration, from which we obtain a law of refraction that determines the change in their group velocity across the interface. We verify this new refraction law in ZnSe and CdSe, both of which manifest large chromatic dispersion at near-infrared frequencies in the vicinity of their band edges. ST wave packets can thus be utilized in nonlinear optics for bridging large group-velocity mismatches in highly dispersive scenarios.