Bioassay-guided isolation of cytotoxic constituents from the flowers of Aquilaria sinensis

Nat Prod Bioprospect. 2022 Apr 1;12(1):11. doi: 10.1007/s13659-022-00334-3.

Abstract

Bioassay-guided fractionation of the EtOH extract from the flowers of Aquilaria sinensis (Lour.) Spreng. (Thymelaeaceae) led to the isolation of a new cucurbitane-type triterpenoid, aquilarolide A (1), along with five known compounds (2-6). The structure of 1 was elucidated by extensive 1D and 2D nuclear magnetic resonance (NMR) experiments and mass spectrometry (MS) data and theoretical calculations of its electronic circular dichroism (ECD) spectra. Aquilarolide A, cucurbitacin E (3), cucurbitacin B (4), and 7-hydroxy-6-methoxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one (6) showed significant cytotoxicity against human lung adenocarcinoma SPC-A-1, human lung squamous cell carcinoma NCI-H520, human lung adenocarcinoma A549, and paclitaxel-resistant A549 (A549/Taxol) cell lines. All four active compounds, with IC50 values ranging from 0.002 to 0.91 μM, had better inhibitory activities against A549/Taxol cells than paclitaxel (IC50 = 1.80 μM). Among them, cucurbitacin E (IC50 = 0.002 μM) is the most active. Further studies are needed to evaluate their in vivo antitumor activities and to clarify their mechanisms.

Keywords: 2-(2-Phenylethyl)chromones; Aquilaria sinensis; Cucurbitane-type triterpenoids; Paclitaxel-resistant lung cancer cells; Thymelaeaceae.