Identification of a c-MYB-directed therapeutic for acute myeloid leukemia

Leukemia. 2022 Jun;36(6):1541-1549. doi: 10.1038/s41375-022-01554-9. Epub 2022 Apr 2.

Abstract

A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Leukemia, Myeloid, Acute* / drug therapy
  • Leukemia, Myeloid, Acute* / genetics
  • Leukemia, Myeloid, Acute* / metabolism
  • Mebendazole
  • Oncogenes
  • Proto-Oncogene Proteins c-myb* / genetics
  • Proto-Oncogene Proteins c-myb* / metabolism
  • Transcription Factors / genetics

Substances

  • Proto-Oncogene Proteins c-myb
  • Transcription Factors
  • Mebendazole