Two-Step Deposition of an Ultrathin GaN Film on a Monolayer MoS2 Template

ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16866-16875. doi: 10.1021/acsami.2c00824. Epub 2022 Apr 4.

Abstract

Ultrathin gallium nitride (GaN) application can be profoundly influenced by its quality, especially the issue of amorphous interfacial layers formed on conventional substrates. Herein, we report a two-step deposition of an ultrathin GaN film via the plasma-enhanced atomic layer deposition (PEALD) technique on a mono-MoS2 template over a SiO2/Si substrate for quality improvement, by starting the deposition temperature at 260 °C and then ramping it to 320 °C. It was found that a lower initiating deposition temperature could be conducive to maintaining the mono-MoS2 template to support the subsequent growth of GaN. Compared to the control group of one-step high-temperature deposition at 320 °C, ideal layer-by-layer film growth is achieved at the low temperature of the two-step method instead of island formation, leading to the direct crystallization of GaN on the substrate with a rather sharp interface. Structural and chemical characterizations show that this two-step method produces a preferred [0001] orientation of the film originating from the interface region. Additionally, the improved two-step ultrathin GaN displays a smooth surface roughness as low as 0.58 nm, a low oxygen impurity concentration of 3.6%, and a nearly balanced Ga/N stoichiometry of 0.95:1. Our work paves a possible way to the feasible fabrication of ultrathin high-quality PEALD-GaN, and it is promising for better performance of relevant devices.

Keywords: PEALD; mono-MoS2; quality improvement; two-step deposition; ultrathin GaN.