Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa lasI Quorum-Sensing Mutant

J Bacteriol. 2022 May 17;204(5):e0055721. doi: 10.1128/jb.00557-21. Epub 2022 Apr 7.

Abstract

Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa, the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa ΔlasI mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa ΔlasI strain. We show that, in response to a phage infection, the P. aeruginosa ΔlasI mutant reactivates QS, which, in turn, restores pqsH expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa ΔlasI cells transiently exhibit superior growth compared to uninfected cells. IMPORTANCE Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.

Keywords: Pseudomonas; bacteriophage; quorum sensing; virulence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Bacteriophages* / genetics
  • Bacteriophages* / metabolism
  • Pseudomonas aeruginosa / metabolism
  • Quorum Sensing* / physiology
  • Virulence Factors / genetics

Substances

  • Bacterial Proteins
  • Virulence Factors