This study evaluated the resistance of Bacillus coagulans GBI-30, 6086 (BC) spores through the processing and storage of white and whole wheat bread. The physicochemical parameters of the probiotic bread formulations were also characterized. Loaves of bread containing or not BC were prepared. Throughout the processing, samples were collected (after mixture, after fermentation, and after baking) for enumeration of BC. In addition, BC was enumerated in different parts of loaves of bread (crust, crumb, and whole slice) collected after baking (day zero) and at different storage times (3, 7, and 10 days). The incorporation of BC did not affect the moisture, specific volume, texture and color parameters, water activity, and pH of loaves of bread. Mixing and fermentation steps did not reduce the BC survival in white or whole wheat bread. The highest (p < 0.05) number of decimal reductions (γ) was caused by baking in the crust for both loaves of bread. Baking caused around two γ of BC in the crust and 1.5 γ of BC in crumb and a whole slice of white and whole bread. Generally, storage did not increase the γ caused by baking, regardless of the evaluated part or type of bread. Results show the impacts of baking on BC and highlight the formulated white and whole wheat loaves of bread as suitable carriers for delivering the probiotic BC.
Keywords: Bakery product; Beneficial microbes; Food processing; Functional food; Sporeforming bacteria.
Copyright © 2022 Elsevier Ltd. All rights reserved.