Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study

Br J Anaesth. 2022 Jun;128(6):1052-1058. doi: 10.1016/j.bja.2022.02.037. Epub 2022 Mar 18.

Abstract

Background: Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV).

Methods: Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort.

Results: HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury.

Conclusions: The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.

Keywords: COVID-19; acute respiratory failure; computational modelling; mechanical ventilation; noninvasive respiratory support; patient self-inflicted lung injury.

MeSH terms

  • COVID-19* / therapy
  • Computer Simulation
  • Humans
  • Lung Injury*
  • Noninvasive Ventilation*
  • Oxygen
  • Respiratory Insufficiency* / therapy

Substances

  • Oxygen