Eukaryotic cells contain subcellular organelles with spatiotemporal regulation to coordinate various biochemical reactions. The various organelles perform their essential biological functions by employing specific biomolecules, including nucleic acids. Recent studies have revealed that noncoding RNAs (ncRNAs) are highly compartmentalized in cells and that their spatial distribution is intimately related to their functions. Dysregulation of subcellular ncRNAs can disrupt cellular homeostasis and cause human diseases. Mitochondria are responsible for energy generation to fuel cell growth and proliferation. Therefore, identifying mitochondria-associated ncRNAs helps to reveal new regulatory mechanisms and physiological functions of mitochondria. In this review, we summarize the latest advances in subcellular ncRNAs derived from either the nuclear or mitochondrial genome. We also discuss available biological approaches for investigating organelle-specific ncRNAs. Exploring the distribution and function of subcellular ncRNAs may facilitate the understanding of endomembrane dynamics and provide potential strategies for clinical transformation. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Methods > RNA Analyses in Cells.
Keywords: human diseases; mitochondria; noncoding RNAs; organelles.
© 2022 Wiley Periodicals LLC.