A Fourth Dose of COVID-19 Vaccine Does Not Induce Neutralization of the Omicron Variant Among Solid Organ Transplant Recipients With Suboptimal Vaccine Response

Transplantation. 2022 Jul 1;106(7):1440-1444. doi: 10.1097/TP.0000000000004140. Epub 2022 Apr 4.

Abstract

Background: Humoral responses to coronavirus disease 2019 (COVID-19) vaccines are attenuated in solid organ transplant recipients (SOTRs), necessitating additional booster vaccinations. The Omicron variant demonstrates substantial immune evasion, and it is unknown whether additional vaccine doses increase neutralizing capacity versus this variant of concern (VOC) among SOTRs.

Methods: Within an observational cohort, 25 SOTRs with low seroresponse underwent anti-severe acute respiratory syndrome coronavirus 2 spike and receptor-binding domain immunoglobulin (Ig)G testing using a commercially available multiplex ELISA before and after a fourth COVID-19 vaccine dose (D4). Surrogate neutralization (percent angiotensin-converting enzyme 2 inhibition [%ACE2i], range 0%-100% with >20% correlating with live virus neutralization) was measured against full-length spike proteins of the vaccine strain and 5 VOCs including Delta and Omicron. Changes in IgG level and %ACE2i were compared using the paired Wilcoxon signed-rank test.

Results: Anti-receptor-binding domain and anti-spike seropositivity increased post-D4 from 56% to 84% and 68% to 88%, respectively. Median (interquartile range) anti-spike antibody significantly increased post-D4 from 42.3 (4.9-134.2) to 228.9 (1115.4-655.8) World Health Organization binding antibody units. %ACE2i (median [interquartile range]) also significantly increased against the vaccine strain (5.8% [0%-16.8%] to 20.6% [5.8%-45.9%]) and the Delta variant (9.1% [4.9%-12.8%] to 17.1% [10.3%-31.7%]), yet neutralization versus Omicron was poor, did not increase post-D4 (4.1% [0%-6.9%] to 0.5% [0%-5.7%]), and was significantly lower than boosted healthy controls.

Conclusions: Although a fourth vaccine dose increases anti-spike IgG and neutralizing capacity against many VOCs, some SOTRs may remain at high risk for Omicron infection despite boosting. Thus, additional protective interventions or alternative vaccination strategies should be urgently explored.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing / blood
  • Antibodies, Viral / blood
  • COVID-19 Vaccines* / immunology
  • COVID-19* / prevention & control
  • Humans
  • Immunization, Secondary*
  • Immunoglobulin G / blood
  • SARS-CoV-2
  • Transplant Recipients*

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Vaccines
  • Immunoglobulin G

Supplementary concepts

  • SARS-CoV-2 variants