Cell labelling using a small fluorescent probe is an important technique in biomedical sciences. We previously developed a biocompatible and membrane-permeable probe, CO-1, which has low nonspecific binding affinity towards nontarget molecules. Although this background-free tame probe has been utilized for labelling of various intracellular biomolecules in live cells, the probes' backgroung-free staining mechanism was not fully understood. Here, we propose that Gating-Oriented Live-cell Distinction (GOLD) mechanism occurs when ABCB1 transporter removes unbound CO-1 molecules from mammalian cells and, in a minor role, DIRC2 pumps CO-1 out from lysosomes. We also showed that solute carrier transporters were not involved in carrying CO-1 inside of cells. The role of reporters in assisting the probes' influx-efflux was analyzed by the combination of CRISPR library sceenings and inhibitors test. In summary, tame probe CO-1 cellular staining occurs in a dual mechanism where the probe moves freely through the cells membrane, but its washable property can be directly related to the action of ABCB1 transporter.
Keywords: ABCB1; Gating-Oriented Live-cell Distinction; Tame probe; background-free cell staining; fluorescent probe.
© 2022 Wiley-VCH GmbH.