Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial

Nat Med. 2022 May;28(5):939-945. doi: 10.1038/s41591-022-01754-x. Epub 2022 Apr 14.

Abstract

Tumor mutational burden (TMB) in circulating tumor DNA (ctDNA) has shown promise in predicting benefit from PD-L1/PD-1 inhibitors in retrospective studies. Aiming to assess blood TMB (bTMB) prospectively, we conducted B-F1RST ( NCT02848651 ), an open-label, phase 2 trial that evaluated bTMB as a predictive biomarker for first-line atezolizumab monotherapy in locally advanced or metastatic stage IIIB-IVB non-small cell lung cancer (n = 152). The co-primary endpoints were investigator-assessed objective response rate (ORR) per RECIST version 1.1 and investigator-assessed progression-free survival (PFS) between high and low bTMB subgroups at the pre-defined bTMB ≥ 16 (14.5 mutations per megabase) cutoff. Secondary endpoints included investigator-assessed PFS, overall survival (OS) and duration of response at various bTMB cutoffs, as well as safety. Investigator-assessed PFS in the bTMB ≥ 16 versus bTMB < 16 groups was not statistically significant. However, bTMB ≥ 16 was associated with higher ORR, and ORR improved as bTMB cutoffs increased. No new safety signals were seen. In exploratory analyses, patients with maximum somatic allele frequency (MSAF) < 1% had higher ORR than patients with MSAF ≥ 1%. However, further analysis showed that this effect was driven by better baseline prognostics rather than by MSAF itself. At 36.5-month follow-up, an exploratory analysis of OS found that bTMB ≥ 16 was associated with longer OS than bTMB < 16. Further study and assay optimization will be required to develop bTMB as a predictive, standalone biomarker of immunotherapy or for use in conjunction with other biomarkers.

Publication types

  • Clinical Trial, Phase II

MeSH terms

  • Antibodies, Monoclonal, Humanized
  • Biomarkers, Tumor / genetics
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Circulating Tumor DNA* / genetics
  • Humans
  • Immune Checkpoint Inhibitors
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Mutation / genetics
  • Retrospective Studies

Substances

  • Antibodies, Monoclonal, Humanized
  • Biomarkers, Tumor
  • Circulating Tumor DNA
  • Immune Checkpoint Inhibitors
  • atezolizumab

Associated data

  • ClinicalTrials.gov/NCT02848651