Weathered petroleum-contaminated soil (WPCS) with a high proportion of heavy hydrocarbons is difficult to remediate. Our previous research demonstrated that Fe2O3-assisted pyrolysis was a cost-effective technology for the remediation of WPCS. However, the pyrolysis behaviors, products, and mechanisms of the WPCS with Fe2O3 are still unclear. In this study, a combination of Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) techniques were used to explore these pyrolysis characteristics. The thermal desorption/degradation of light and heavy hydrocarbons in the WPCS mainly occurred at 200-400 °C and 400-550 °C, respectively. The activation energy of thermal reaction of heavy hydrocarbons was decreased in the presence of Fe2O3 during the WPCS pyrolysis processes. In the process, the released inorganic gaseous products were mainly H2O and CO2, while the released organic gaseous compounds were primarily cycloalkanes, alkanes, acids/esters, alcohols, and aldehydes. Compared with the WPCS pyrolysis without Fe2O3, the yields of gaseous products released during the WPCS pyrolysis with Fe2O3 were reduced significantly, and some gaseous products were even not detected. This phenomenon was contributed by the following two reasons: 1) heavy hydrocarbons in the WPCS were more easily transformed into coke in the presence of Fe2O3 during pyrolysis; 2) some released gaseous products were reacted with Fe2O3 and fixed on the soil particles. Therefore, the WPCS pyrolysis with Fe2O3 can effectively reduce the burden of tail gas treatment. Criado method analysis results suggested that the reaction mechanism of heavy hydrocarbons during the WPCS pyrolysis with Fe2O3 was rendered as the synergic effects of diffusion, order-based, and random nucleation and growth reactions.
Keywords: Emission products; Kinetic analysis; Petroleum-contaminated soil; Pyrolysis; Reaction mechanisms.
Copyright © 2022 Elsevier B.V. All rights reserved.