Neurological diseases are highly prevalent and constitute a significant cause of mortality and disability. Neurological disorders encompass a heterogeneous group of neurodegenerative conditions, broadly characterized by injury to the peripheral and/or central nervous system. Although the etiology of neurological diseases varies greatly, they share several characteristics, such as heterogeneity of clinical presentation, non-cell autonomous nature, and diversity of cellular, subcellular, and molecular pathways. Systems biology has emerged as a valuable platform for addressing the challenges of studying heterogeneous neurological diseases. Systems biology has manifold applications to address unmet medical needs for neurological illness, including integrating and correlating different large datasets covering the transcriptome, epigenome, proteome, and metabolome associated with a specific condition. This is particularly useful for disentangling the heterogeneity and complexity of neurological conditions. Hence, systems biology can help in uncovering pathophysiology to develop novel therapeutic targets and assessing the impact of known treatments on disease progression. Additionally, systems biology can identify early diagnostic biomarkers, to help diagnose neurological disease preceded by a long subclinical phase, as well as define the exposome, the collection of environmental toxicants that increase risk of certain neurological diseases. In addition to these current applications, there are numerous potential emergent uses, such as precision medicine.
Keywords: Alzheimer’s disease; Amyotrophic lateral sclerosis; Diabetes; Inclusion body myositis; Motor neuron disease; Neurodegenerative disease; Obesity; Parkinson’s disease; Peripheral neuropathy.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.