Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt

Anal Methods. 2022 May 5;14(17):1678-1689. doi: 10.1039/d2ay00221c.

Abstract

The legacy use of aqueous film-forming foam (AFFF) has led to the generation of large volumes of per- and poly-fluoroalkyl substances (PFAS)-contaminated asphalt materials, especially at airports and fire training areas. The management of such PFAS-contaminated asphalt materials requires an understanding of PFAS concentrations in these materials. This study, therefore, aimed to develop a suitable extraction methodology for the analysis of 22 target PFAS (i.e., carboxylic acids, sulfonic acids and fluorotelomers) in asphalt materials. A series of experiments was conducted to optimise extraction solvent composition, as well as to assess the performance of the chosen method under various conditions (i.e., sonication temperature, PFAS contamination level, asphalt core composition and timing of stable isotope addition used as internal standard). The methanol-based extractants performed best due to their accuracy and precision, which were within the acceptable range (extraction efficiency between 70 and 130% and RSD < 20%). The method which involved three successive extractions with methanol/1% NH3 by ultrasonication at 25 °C was selected due to its performance and ease of operation. The mean recovery of a vast majority of PFAS was found to be in the acceptable range. Tests on the timing of addition of stable isotope (SI)-labelled PFAS internal standards indicate that the recoveries obtained, regardless of when the stable isotopes were added, were within the acceptable range for PFAS. The accuracy and precision of PFAS recoveries were not affected by PFAS spike level (2 μg kg-1 and 200 μg kg-1), as well as sample composition (based on the location of asphalt material in the field). Low RSDs were achieved for asphalt cores collected from a contaminated site covering a wide range of concentrations (from LOQ to 2135 mg kg-1), demonstrating the suitability of the sample preparation method for real-world samples. The results from the interlaboratory testing were also in good agreement and validated the proposed PFAS extraction and analytical approach.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fluorocarbons* / analysis
  • Hydrocarbons
  • Methanol
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Fluorocarbons
  • Hydrocarbons
  • Water Pollutants, Chemical
  • Water
  • asphalt
  • Methanol