New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold

Eur J Med Chem. 2022 Jul 5:237:114366. doi: 10.1016/j.ejmech.2022.114366. Epub 2022 Apr 13.

Abstract

The aldo-keto reductase 1C3 (AKR1C3) enzyme is considered an attractive target in Castration Resistant Prostate Cancer (CRPC) because of its role in the biosynthesis of androgens. Flufenamic acid, a non-selective AKR1C3 inhibitor, has previously been subjected to bioisosteric modulation to give rise to a series of compounds with the hydroxytriazole core. In this work, the hit compound of the previous series has been modulated further, and new, more potent, and selective derivatives have been obtained. The poor solubility of the most active compound (cpd 5) has been improved by substituting the triazole core with an isoxazole heteronucleous, with similar enzymatic activity being retained. Potent AKR1C3 inhibition is translated into antiproliferative effects against the 22RV1 CRPC cellular model, and the in-silico design, synthesis and biological activity of new compounds are described herein. Compounds have also been assayed in combination with two approved antitumor drugs, abiraterone and enzalutamide.

MeSH terms

  • Aldo-Keto Reductase Family 1 Member C3* / antagonists & inhibitors
  • Androgens
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Enzyme Inhibitors* / chemistry
  • Enzyme Inhibitors* / pharmacology
  • Humans
  • Male
  • Prostatic Neoplasms, Castration-Resistant* / drug therapy

Substances

  • Androgens
  • Antineoplastic Agents
  • Enzyme Inhibitors
  • AKR1C3 protein, human
  • Aldo-Keto Reductase Family 1 Member C3