Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

Adv Mater. 2022 Jun;34(23):e2201178. doi: 10.1002/adma.202201178. Epub 2022 May 2.

Abstract

Organic electrochemical transistors (OECTs) represent an emerging device platform for next-generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, but they have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state-of-the-art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side-chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm-1 ) and biaxial stretchability up to 100% strain. Furthermore, on-skin electrocardiogram (ECG) recording is demonstrated, which combines built-in amplification and unprecedented skin conformability.

Keywords: organic electrochemical transistors; redox-active polymer semiconductors; stretchable electronics.

MeSH terms

  • Electronics
  • Oxidation-Reduction
  • Polymers* / chemistry
  • Skin
  • Transistors, Electronic*

Substances

  • Polymers