Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer

Sci Adv. 2022 Apr 22;8(16):eabm3453. doi: 10.1126/sciadv.abm3453. Epub 2022 Apr 22.

Abstract

Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.

MeSH terms

  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Carcinoma, Pancreatic Ductal* / diagnosis
  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / metabolism
  • Extracellular Vesicles* / metabolism
  • Humans
  • Pancreatic Neoplasms* / diagnosis
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / metabolism
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Proto-Oncogene Proteins p21(ras) / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Tumor Suppressor Protein p53
  • Ataxia Telangiectasia Mutated Proteins
  • Proto-Oncogene Proteins p21(ras)