Depression of the sensory input during voluntary muscle contractions has been demonstrated using electrophysiological methods in both animals and humans. However, the association between electrophysiological responses of the sensory system and subjective peripheral sensation (SPS) during a voluntary muscle contraction remains unclear. This study aimed to describe the changes in SPS, spinal α-motoneuron excitability (F-wave to M-wave amplitude), and somatosensory evoked potentials (SEPs) during a unilateral pinch-grip task. Outcome variables were measured on the side ipsilateral and contralateral to the muscle contraction and at rest (control). Participants were 8 healthy men aged 20.9±0.8 years. The isometric pinch-grip task was performed at 30% of the maximum voluntary isometric force measured for the right and left hands separately. The appearance rate of the F-wave during the task was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and control condition. Although there was no difference in the F-wave latency between hands and the control condition, the amplitude of the F-wave was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. There was no difference in the amplitude of the SEP at N20. However, the amplitude at P25 was significantly lower for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. The accuracy rate of detecting tactile stimulation, evaluated for 20 repetitions using a Semmes-Weinstein monofilament at the sensory threshold for each participant, was significantly lower during the pinch-grip task for both the ipsilateral (right) and contralateral (left) hands than in the control condition. Overall, our findings show that SPS and neurophysiological parameters were not modulated in parallel during the task, with changes in the subjective sensation preceding changes in electrophysiological indices during the motor task. Our findings provide basic information on sensory-motor coordination.