The macrophage checkpoint interaction CD47-SIRPα is an emerging target for cancer therapy, but clinical trials of monoclonal anti-CD47 show efficacy only in liquid tumors when combined with tumor-opsonizing IgG. Here, in challenging metastatic solid tumors, CD47 deletion shows no effect on tumor growth unless combined with otherwise ineffective tumor-opsonization, and we likewise show wild-type metastases are suppressed by SIRPα-blocked macrophages plus tumor-opsonization. Lung tumor nodules of syngeneic B16F10 melanoma cells with CD47 deletion show opsonization drives macrophage phagocytosis of B16F10s, consistent with growth versus phagocytosis calculus for exponential suppression of cancer. Wild-type CD47 levels on metastases in lungs of immunocompetent mice and on human metastases in livers of immunodeficient mice show that systemic injection of antibody-engineered macrophages also suppresses growth. Such in vivo functionality can be modulated by particle pre-loading of the macrophages. Thus, even though CD47-SIRPα disruption and tumor-opsonizing IgG are separately ineffective against established metastatic solid tumors, their combination in molecular and cellular therapies prolongs survival.
Keywords: B16F10; CD47; SIRPα; cell therapy; immunocompetent; immunotherapy; macrophage checkpoint; melanoma; metastasis.