Dicationic Bis-Pyridinium Hydrazone-Based Amphiphiles Encompassing Fluorinated Counteranions: Synthesis, Characterization, TGA-DSC, and DFT Investigations

Molecules. 2022 Apr 12;27(8):2492. doi: 10.3390/molecules27082492.

Abstract

Quaternization and metathesis approaches were used to successfully design and synthesize the targeted dicationic bis-dipyridinium hydrazones carrying long alkyl side chain extending from C8 to C18 as countercation, and attracted to halide (I-) or fluorinated ion (PF6-, BF4-, CF3COO-) as counteranion. Spectroscopic characterization using NMR and mass spectroscopy was used to establish the structures of the formed compounds. In addition, their thermal properties were investigated utilizing thermogravimetric analyses (TGA), and differential scanning calorimetry (DSC). The thermal study illustrated that regardless of the alkyl group length (Cn) or the attracted anions, the thermograms of the tested derivatives are composed of three stages. The mode of thermal decomposition demonstrates the important roles of both anion and alkyl chain length. Longer chain length results in greater van der Waals forces; meanwhile, with anions of low nucleophilicity, it could also decrease the intramolecular electrostatic interaction, which leads to an overall interaction decrease and lower thermal stability. The DFT theoretical calculations have been carried out to investigate the thermal stability in terms of the Tonset. The results revealed that the type of the counteranion and chain length had a substantial impact on thermal stability, which was presumably related to the degree of intermolecular interactions. However, the DFT results illustrated that there is no dominant parameter affecting the thermal stability, but rather a cumulative effect of many factors of different extents.

Keywords: DFT; TGA-DSC study; amphiphiles; dicationic; pyridinium hydrazones.

MeSH terms

  • Anions
  • Calorimetry, Differential Scanning
  • Density Functional Theory
  • Hydrazones* / chemistry
  • Magnetic Resonance Spectroscopy

Substances

  • Anions
  • Hydrazones