Polygonati rhizoma (PR), a traditional medical and edible product, is rich in polysaccharides and exhibits physiological activity, including antioxidant, hypoglycemic and hypolipidemic properties. Neutral polysaccharides have been reported to be one of the main active ingredients of Polygonatum, with many of these fractions being responsible for the biological activity. This behavior was shown to be closely connected to the chemical structure, monosaccharide composition, and glycosidic bond type. There are few reports on the chemical constituents of the neutral polysaccharides from different sources of PR. In this study, neutral polysaccharides of PR from four different regions of China (Chun'an (Zhejiang), Xixia (Henan), Danfeng (Shanxi), and Pan'an (Zhejiang)), named CAZJ, XXHN, DFSX, and PAZJ, respectively, were isolated by anion-exchange and gel-permeation chromatography. Structures of the four polysaccharides were investigated. The results showed that all of them were mainly glucose and mannose, while the monosaccharide composition and content of polysaccharides from different sources varied. The molecular weights of CAZJ, XXHN, DFSX, and PAZJ were 14.119, 22.352, 18.127, and 15.699 kDa, respectively. Infrared spectra illustrated the existence of α-glycosidic bond and β-glycosidic bond in the polysaccharides. CAZJ, XXHN, and DFSX possessed a pyranose ring structure, whereas PAZJ had a furanose ring structure. Congo red test indicated that XXHN, DFSX, and PAZJ had a triple-helix structure. X-ray diffraction showed that the polysaccharides consisted of crystalline and amorphous regions. All four polysaccharides exhibited different degrees of antioxidant and hypoglycemic activities with a dose-dependent manner in the 1.0-10.0 mg/mL concentration range. Correlation analysis revealed that the bioactivities of polysaccharides was significantly related to monosaccharide composition, uronic acid, and protein content. The results suggested that neutral polysaccharides could be used as potential natural antioxidants and hypoglycemic agents for functional and nutraceutical applications.
Keywords: Polygonatum polysaccharide; antioxidant activity; hypoglycemic activity; structural characterization.
© 2022 Wiley Periodicals LLC.