The motor modules during human walking are identified using non-negative matrix factorization (NNMF) from surface electromyography (EMG) signals. The extraction of motor modules in healthy participants is affected by the change in pre-processing of EMG signals, such as low-pass filters (LPFs); however, the effect of different pre-processing methods, such as the number of necessary gait cycles (GCs) in post-stroke patients with varying steps, remains unknown. We aimed to specify that the number of GCs influenced the motor modules extracted in the consideration of LPFs in post-stroke patients. In total, 10 chronic post-stroke patients walked at a self-selected speed on an overground walkway, while EMG signals were recorded from the eight muscles of paretic lower limb. To verify the number of GCs, five GC conditions were set, namely, 25 (reference condition), 20, 15, 10, and 5 gate cycles with three LPFs (4, 10, and 15 Hz). First, the number of modules, variability accounted for (VAF), and muscle weightings extracted by the NNMF algorithm were compared between the conditions. Next, a modified NNMF algorithm, in which the activation timing profiles among different GCs were unified, was performed to compare the muscle weightings more robustly between GCs. The number of motor modules was not significantly different, regardless of the GCs. The difference in VAF and muscle weightings in the different GCs decreased with the LPF of 4 Hz. Muscle weightings in 15 GCs or less were significantly different from those in 25 GCs using the modified NNMF. Therefore, we concluded that the variability extracted motor modules by different GCs was suppressed with lower LPFs; however, 20 GCs were needed for more representative extraction of motor modules during walking in post-stroke patients.
Keywords: gait; gait cycle; low-pass filter; motor module; non-negative matrix factorization; post-stroke patient.
Copyright © 2022 Chujo, Mori, Kitawaki, Wakida, Noda and Hase.