Holey and Wrinkled Flash Graphene from Mixed Plastic Waste

ACS Nano. 2022 May 24;16(5):7804-7815. doi: 10.1021/acsnano.2c00379. Epub 2022 Apr 26.

Abstract

High surface area varieties of graphene have captured significant attention, allowing for improved performance in a variety of applications. However, there are challenges facing the use of graphene in these applications since it is expensive and difficult to synthesize in bulk. Here, we leverage the capabilities of flash Joule heating to synthesize holey and wrinkled flash graphene (HWFG) in seconds from mixed plastic waste feedstocks, using in situ salt decomposition to produce and stabilize pore formation during the reaction. Surface areas as high as 874 m2 g-1 are obtained, with characteristics of micro-, meso-, and macroporosities. Raman spectroscopy confirms the wrinkled and turbostratic nature of the HWFG. We demonstrate HWFG applications in its use as a metal-free hydrogen evolution reaction electrocatalyst, with excellent stability, competitive overpotential, and Tafel slope; in a Li-metal battery anode allowing for stable and high discharge rates; and in a material with high gas adsorption. This represents an upcycle of mixed plastic waste, thereby affording a valuable route to address this pressing environmental pollutant concern.

Keywords: flash Joule heating; flash graphene; holey and wrinkled flash graphene; mixed plastic waste; turbostratic graphene.