Marine heatwaves (MHWs) frequency and intensity are increasing around the globe, affecting marine ecosystems' structure and functioning. Understanding how key marine species respond to these short-term extreme events is urgent for predicting damage to coastal ecosystems. Hypnea pseudomusciformis presents distribution in different floristic provinces on the Brazilian coast: tropical, transition and warm-temperate. Here, we evaluate the effects of simulated heatwaves on H. pseudomusciformis populations by measuring the changes in algal growth, pigment content, and photosynthesis. Based on data for the last four decades, we characterized the MHW patterns for each of the three collection sites. Perturbation levels were identified as average intensity heatwave (Δ +2 °C), maximum intensity heatwave (Δ +4 °C) and extreme intensity heatwave (Δ +6 °C), with an average duration of seven days. Based on growth rate data, corroborated with measurements of photosynthesis fluorescence and pigment contents. H. pseudomusciformis populations exhibit distinct tolerance and physiological responses to MHWs. The tropical and transition specimens were affected by Δ + 4 °C and Δ + 6 °C MHW scenarios, while the warm-temperate specimens was the only one to recover in all the MHW scenarios tested. These data are worrisome under a global warming scenario and an increase in MHWs, indicating that tropical and transition specimens of H. pseudomusciformis may be at risk of local extinction. This knowledge will be fundamental in driving any future management intervention or policy change for the conservation of marine ecosystems.
Copyright © 2022 Elsevier Ltd. All rights reserved.