Hypertensive renal damage is a common secondary kidney disease caused by poor control of blood pressure. Recent evidence has revealed abnormal activation of the complement alternative pathway (AP) in hypertensive patients and animal models and that this phenomenon is related to hypertensive renal damage. Conditions in the setting of hypertension, including high renin concentration, reduced binding of factor H to the glomerular basement membrane, and abnormal local synthesis of complement proteins, potentially promote the AP activation in the kidney. The products of the AP activation promote the phenotypic transition of mesangial cells and tubular cells, attack endothelial cells and recruit immunocytes to worsen hypertensive renal damage. The effects of complement inhibition on hypertensive renal damage are contradictory. Although clinical data support the use of C5 monoclonal antibody in malignant hypertension, pharmacological inhibition in hypertensive animals provides little benefit to kidney function. Therefore, the role of the complement AP in the pathogenesis of hypertensive renal damage and the value of complement inhibition in hypertensive renal damage treatment must be further explored.
Keywords: C3a; C5a; C5b-9; Hypertensive renal damage; complement C3; complement alternative pathway.