Water-soluble non-conjugated polymer dots (PDs) have been synthesized using hyperbranched polyethyleneimine (PEI) and dihydroxybenzaldehyde (DHB) for the first time via the Schiff base reaction at room temperature. The yielded non-conjugated PDs of PEI-DHB could display the well-defined spheric structure and good water solubility. In contrast to the common PDs otherwise showing blue emission, the PEI-DHB PDs could give out strong green fluorescence in aqueous media. Especially, the fluorescence of the PEI-DHB PDs could be specifically quenched by MnO2 nanosheets through the inner filter effects and further restored by the thiocholine that could reduce MnO2 nanosheets into Mn2+. Herein, thiocholine could be produced in hydrolysis reaction of acetylthiocholine catalyzed by the acetylcholinesterase (AChE), of which the catalytic activity could be irreversibly inhibitted by the introduction of organophosphates. A highly selective fluorimetric method was thereby been developed for the detection of organophosphorus pesticides using dimethyl-dichloro-vinyl phosphate as a model. The linear concentrations ranges from 0.050 to 2.5 μM. Importantly, the non-conjugated PDs probes with strong green fluorescence and high water solubility may promise the extensive applications in the environmental, food, and clinical analysis fields.
Keywords: Catalysis inhibition; Fluorimetric detection; MnO(2) nanosheets; Organophosphate pesticides; Water-soluble polymer dots.
Copyright © 2022 Elsevier B.V. All rights reserved.