Plant ascorbate and glutathione metabolism counteracts oxidative stress mediated, for example, by excess light. In this review, we discuss the properties of immunocytochemistry and transmission electron microscopy, redox-sensitive dyes or probes and bright-field microscopy, confocal microscopy or fluorescence microscopy for the visualization and quantification of glutathione at the cellular or subcellular level in plants and the quantification of glutathione from isolated organelles. In previous studies, we showed that subcellular ascorbate and glutathione levels in Arabidopsis are affected by high light stress. The use of light-emitting diodes (LEDs) is gaining increasing importance in growing indoor crops and ornamental plants. A combination of different LED types allows custom-made combinations of wavelengths and prevents damage related to high photon flux rates. In this review we provide an overview on how different light spectra and light intensities affect glutathione metabolism at the cellular and subcellular levels in plants. Findings obtained in our most recent study demonstrate that both light intensity and spectrum significantly affected glutathione metabolism in wheat at the transcriptional level and caused genotype-specific reactions in the investigated Arabidopsis lines.
Keywords: Immunolabeling; Light intensity and spectrum; Oxidative stress; Redox state; Subcellular glutathione content in plants; roGFP.
© 2022. The Author(s).