Large herbivores can exert top-down control on terrestrial plant communities, but the magnitude, direction, and scale dependency of their impacts remain equivocal, especially in temperate and boreal forests, where multiple disturbances often interact. Using a unique, long-term, and replicated landscape experiment, we assessed the influence of a high density of white-tailed deer (Odocoileus virginianus) on the spatiotemporal dynamics of diversity, composition, and successional trajectories of understorey plant assemblages in recently logged boreal forests. This experiment provided a rare opportunity to test whether deer herbivory represents a direct filter on plant communities or if it mainly acts to suppress dominant plants, which, in turn, release other plant species from strong negative plant-plant interactions. These two hypotheses make different predictions about changes in community composition and alpha and beta diversity in different vegetation layers and at different spatial scales. Our results showed that deer had strong effects on plant community composition and successional trajectories, but the resulting impacts on plant alpha and beta diversity patterns were markedly scale dependent in both time and space. Responses of tree and non-tree vegetation layers were strongly asymmetric. Deer acted both as a direct filter and as a suppressor of dominant plant species during early forest succession, but the magnitude of both processes was specific to tree and non-tree vegetation layers. Although our data supported the ungulate-driven homogenization hypothesis, compositional shifts and changes of alpha diversity were poor predictors of beta diversity loss. Our findings underscore the importance of long-term studies in revealing nonlinear temporal community trends, and they challenge managers to prioritize particular community properties and scales of interest, given contrasting trends of composition and alpha and beta diversity across spatial scales.
Keywords: alpha diversity; beta diversity; biodiversity; boreal; browsing; cervids; deer; herbivory; homogenization; large herbivores; richness; spatial scale.
© 2022 The Ecological Society of America.