During spaceflight, astronauts can experience significantly higher levels of hemolysis. With future space missions exposing astronauts to longer periods of microgravity, such as missions to Mars, there will be a need to better understand this phenomenon. We have proposed that retinal fundus photography and deep learning may be utilized to help further understand this microgravity-induced, anemic process for future spaceflight. By utilizing astronaut and terrestrial analog metadata, a foundation can be built to develop an algorithm that allows for non-invasive retinal imaging to quantify hemoglobin levels and detect anemia during spaceflight. This approach would allow for a non-invasive retinal photograph that can be done frequently during spaceflight as opposed to an invasive blood draw and subsequent tests.
Keywords: Long-duration spaceflight; Machine learning; Non-invasive anemia detection; Retinal fundus photo.
Copyright © 2022 The Committee on Space Research (COSPAR). Published by Elsevier B.V. All rights reserved.