The Polymorphism and Expression of EGFL7 and miR-126 Are Associated With NSCLC Susceptibility

Front Oncol. 2022 Apr 14:12:772405. doi: 10.3389/fonc.2022.772405. eCollection 2022.

Abstract

Previous investigations have reported that microRNA-126 (miR-126) and its host gene, epidermal growth factor-like domain-containing protein 7 (EGFL7) are involved in lung cancer progression, suggesting EGFL7 and miR-126 play a joint role in lung cancer development. In this study, we analyzed the methylation-associated regulation of EGFL7 and miR-126 in non-small cell lung cancer (NSCLC) and further investigated the association between EGFL7/miR-126 polymorphisms and NSCLC susceptibility in the Han Chinese population. Based on our data, relative to those in adjacent normal tissue, both EGFL7 expression and miR-126 expression were decreased significantly in lung cancer tissue (P = 3x10-4 and P < 1x10-4), and the expression of EGFL7 mRNA and miR-126 was significantly correlated in both NSCLC tissue n = 46, r = 0.43, P = 0.003 and adjacent normal tissue n = 46, r = 0.37, P = 0.011. Differential methylation analysis indicated that methylation levels of multiple CG loci in EGFL7 were significantly higher in the lung cancer samples than in the normal samples (P < 0.01). Moreover, EGFL7 mRNA and miR-126 were significantly upregulated after treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR) in lung cancer cell lines. In addition, the A allele of rs2297538 was significantly associated with a decreased NSCLC risk (OR = 0.68, 95% CI: 0.52~0.88), and the expression of EGFL7 and miR-126 was significantly lower in rs2297538 homozygous G/G tumor tissue than in A/G+A/A tumor tissue (P = 0.01 and P = 0.002). Our findings suggest that the expression of EGFL7 and miR-126 in NSCLC can be concomitantly downregulated through methylation and the EGFL7/miR-126 polymorphism rs2297538 is correlated with NSCLC risk. Together, these results provide new insights into the pathogenesis of NSCLC.

Keywords: DNA methylation; EGFL7; NSCLC; SNPs; miR-126.