Template Synthesis of NPN' Pincer-type Ligands at Titanium Using an Ambiphilic Phosphide Scaffold

Inorg Chem. 2022 May 16;61(19):7642-7653. doi: 10.1021/acs.inorgchem.2c00917. Epub 2022 May 2.

Abstract

Ti-imido complex [TiCl(NtBu)(BIPP)] [1; BIPP = bis(iminophosphoranyl)phosphide ligand] reacts with terminal alkynes R-C≡CH (R = phenyl, isopropenyl, cyclopropyl, and 2-pyridyl) via P-P bond cleavage of the BIPP ligand. The resulting complexes [TiCl(NPN')(NPhPPh2)] (2a-d) contain a pincer-type NPN' phosphide ligand that incorporates the terminal alkyne and the imido ligand from complex 1. Complexes 2a-d feature two chiral centers (Ti and P) with interdependent absolute configurations; thus, they are formed stereoselectively. Complex 2a (R = phenyl) undergoes chloride abstraction with [Et3SiHSiEt3][B(C6F5)4], yielding [Ti(NPN')(NPhPPh2)][B(C6F5)4] (3). Complex 3 is a moderately active and stereoselective initiator for the ring-opening polymerization of rac-lactide. Complex 3 activates the C═O bond of 4-iodobenzaldehyde to give complex 4 as a single diastereomer despite the presence of three chiral centers. Complex 3 undergoes transmetallation with SbCl3, yielding [Sb(NPN')][B(C6F5)4] (5) and [TiCl3(NPhPPh2)] (6) selectively. The bonding situation in 3 and 5 was analyzed using Bader's atoms in molecules and the electron localization function, showing that the nitrogen atoms of the NPN' ligand are electronically similar, and that the metal-phosphide interaction is more polar in the case of titanium.