Background US elastography is a first-line assessment of liver fibrosis severity; however, its application is limited by its insufficient sensitivity in early-stage fibrosis detection and its measurements are affected by inflammation. Purpose To assess the sensitivity of US molecular imaging (USMI) in early-stage liver fibrosis detection and to determine whether USMI can specifically distinguish fibrosis regardless of inflammation when compared with two-dimensional (2D) shear-wave elastography (SWE). Materials and methods USMI and 2D SWE were performed prospectively (January to June 2021) in 120 male Sprague-Dawley rats with varying degrees of liver fibrosis and acute hepatitis and control rats. Liver sinusoidal capillarization was viewed at CD34-targeted USMI and quantitatively analyzed by the normalized intensity difference (NID). Data were compared by using a two-sided Student t test or one-way analysis of variance. Linear correlation analyses were used to evaluate the relationships between collagen proportionate area values and NID and liver stiffness measurement (LSM) values. Receiver operating characteristic curves were used to assess the diagnostic performance in detecting liver fibrosis. Results Both NID and LSM values showed good linear correlation with collagen proportionate area values (r = 0.91 and 0.87, respectively). No difference was observed between the areas under the receiver operating characteristic curve in detecting stage F0-F1 between USMI and 2D SWE (0.97 vs 0.91, respectively; P = .20). USMI depicted liver fibrosis at an early stage more accurately than 2D SWE (area under the curve, 0.97 vs 0.82, respectively; P = .01). Rats with hepatitis had higher liver stiffness values than control rats (9.83 kPa ± 0.79 vs 6.55 kPa ± 0.38, respectively; P < .001), with no difference in the NID values between control rats and rats with hepatitis (6.75% ± 1.43 vs 6.74% ± 0.86, respectively; P = .98). Conclusion Sinusoidal capillarization viewed at US molecular imaging helped to detect early-stage liver fibrosis more accurately than two-dimensional shear-wave elastography and helped assess fibrosis regardless of inflammation. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Barr in this issue.