A hybrid borotungstate-coated metal-organic framework with supercapacitance, photocatalytic dye degradation and H2O2 sensing properties

Dalton Trans. 2022 May 17;51(19):7613-7621. doi: 10.1039/d2dt00976e.

Abstract

The compounding of polyoxometalates (POMs) with structurally well-defined and porous metal-organic frameworks (MOFs) has become a hot research topic. Here, a core-shell type hybrid, {Ag5BW12O40}@[Ag3(μ-Hbtc)(μ-H2btc)]n (called {Ag5BW12O40}@Ag-BTC-2, where BTC = 1,3,5-benzyl carboxylic acid), was successfully prepared via a simple grinding method. IR, XRD, SEM, TEM, and XPS analysis was used to confirm the structure. The specific capacitance is 179.1 F g-1 when the current density is 1 A g-1, using nickel foam as the collector, and the capacitance retention is 97.4% after 5000 cycles. The resulting aqueous-based symmetric supercapacitor has a power density of 496 W kg-1 and an energy density of 12.4 W h kg-1. In addition, the degradation rates using {Ag5BW12O40}@Ag-BTC-2 toward methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) exceeded 90% in 140 min and remained essentially unchanged over five replicate experiments, showing high photocatalytic activity. Meanwhile, when {Ag5BW12O40}@Ag-BTC-2 acts as a H2O2 biosensor, it has a low detection limit (0.19 μM), a wide linear range (0.4 μM-0.27 mM) and high anti-interference properties. This shows that the synthesis of POMOFs via a grinding method is an effective strategy to improve the performance.

MeSH terms

  • Boron Compounds
  • Catalysis
  • Hydrogen Peroxide
  • Metal-Organic Frameworks* / chemistry
  • Tungsten Compounds*

Substances

  • Boron Compounds
  • Metal-Organic Frameworks
  • Tungsten Compounds
  • borotungstic acid
  • Hydrogen Peroxide