Extended Intraoperative Longitudinal 3-Dimensional Cone Beam Computed Tomography Imaging With a Continuous Multi-Turn Reverse Helical Scan

Invest Radiol. 2022 Nov 1;57(11):764-772. doi: 10.1097/RLI.0000000000000885. Epub 2022 May 3.

Abstract

Objectives: Cone beam computed tomography (CBCT) imaging is becoming an indispensable intraoperative tool; however, the current field of view prevents visualization of long anatomical sites, limiting clinical utility. Here, we demonstrate the longitudinal extension of the intraoperative CBCT field of view using a multi-turn reverse helical scan and assess potential clinical utility in interventional procedures.

Materials and methods: A fixed-room robotic CBCT imaging system, with additional real-time control, was used to implement a multi-turn reverse helical scan. The scan consists of C-arm rotation, through a series of clockwise and anticlockwise rotations, combined with simultaneous programmed table translation. The motion properties and geometric accuracy of the multi-turn reverse helical imaging trajectory were examined using a simple geometric phantom. To assess potential clinical utility, a pedicle screw posterior fixation procedure in the thoracic spine from T1 to T12 was performed on an ovine cadaver. The multi-turn reverse helical scan was used to provide postoperative assessment of the screw insertion via cortical breach grading and mean screw angle error measurements (axial and sagittal) from 2 observers. For all screw angle measurements, the intraclass correlation coefficient was calculated to determine observer reliability.

Results: The multi-turn reverse helical scans took 100 seconds to complete and increased the longitudinal coverage by 370% from 17 cm to 80 cm. Geometric accuracy was examined by comparing the measured to actual dimensions (0.2 ± 0.1 mm) and angles (0.2 ± 0.1 degrees) of a simple geometric phantom, indicating that the multi-turn reverse helical scan provided submillimeter and degree accuracy with no distortion. During the pedicle screw procedure in an ovine cadaver, the multi-turn reverse helical scan identified 4 cortical breaches, confirmed via the postoperative CT scan. Directly comparing the screw insertion angles (n = 22) measured in the postoperative multi-turn reverse helical and CT scans revealed an average difference of 3.3 ± 2.6 degrees in axial angle and 1.9 ± 1.5 degrees in the sagittal angle from 2 expert observers. The intraclass correlation coefficient was above 0.900 for all measurements (axial and sagittal) across all scan types (conventional CT, multi-turn reverse helical, and conventional CBCT), indicating excellent reliability between observers.

Conclusions: Extended longitudinal field-of-view intraoperative 3-dimensional imaging with a multi-turn reverse helical scan is feasible on a clinical robotic CBCT imaging system, enabling long anatomical sites to be visualized in a single image, including in the presence of metal hardware.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cadaver
  • Cone-Beam Computed Tomography* / methods
  • Humans
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sheep
  • Tomography, X-Ray Computed* / methods